1.Clocking the body

The internal mechanism controlling our wake and sleep cycle is known as our body clock.  More specifically it is a small tissue located in our hypothalamus called the suprachiasmatic nucleus, or SCN for short.  The SCN is our circadian pacemaker and it regulates a vast array of neurological and physiological process's such as; melatonin, cortisol, body temperature, heart rate, and metabolism.  The harmony of these rhythms is what makes us feel alert, awake and ready for activity during the day, as well as preparing us for sleep and recovery in the evenings. Each of us have our own endogenous timing of these rhythms known as our circadian rhythm, the timing of which is close to but not exactly 24 hours.  Because of this our bodies use environmental cues to synchronise our body clock with the 24 hour day, and this cue is the light/dark cycle of our planet.


This is what allows us to acclimatise to new time zones and adapt to changes in seasonal day lengths.  Without this ability to synchronise to the light/dark pattern we would find extremely difficult to sleep and wake in a regular pattern, and would always be fighting the urge to wake earlier or sleep later.  This need to synchronise to the light/dark pattern of our environment is not unique to humans, in fact every living organism uses this cue as their biological metronome.  For us the way in which we receive this information is through the eye.

Image by Icons8 Team


2. More than vision

The function of the human eye in vision is not a new concept. However only recently have we understood that our eye is doing much more than allowing us to form images.  A newly discovered group of photoreceptors called intrinsically photosensitive retinal ganglion cells (ipRGCs for short) has prompted scientists to rethink the role that light plays in our biology. These  photoreceptors are close cousins of the more commonly known rods and cones.  They respond to light similarly to just like rods and cones, however are sensitive to very particular bandwidth of light around 480-490nm.  Unlike rods and cones, ipRGCs are non-image forming and do not contribute to visual acuity.  In fact even though they convert photons into electrical signals (like rods and cones), the places these signals end up are very different.  The ipRGCs have a direct path to the SCN (master circadian pacemaker), and through experiments looking at melatonin levels under light at 480-490nm we see that they can actually delay the onset of melatonin secretion, in effect adjusting the timing of our body clock.  Even people who are visually blind but with their eyes intact are affected in the same way under these conditions.  This understanding of the role light plays in our circadian entrainment raises a lot of questions around the importance of our daily 'light diet'. 

Image by Matt Noble


3.Let there be light

Excluding those who spend winters living at extreme latitudes, we can safely say our days are filled with light.  Some of it natural but most of it artificial to support the indoor environments we inhabit.  Considering daylight for a moment, we know it is spectrally rich in all wave lenghts within our visual range. In fact daylight contains a vast range of radiation well outside our visual range too such as infrared and ultra-violet.  Modern artificial light however is much more 'tuned' for visual efficiency, with minimal to no wasted energy.  If we consider LED as our current light source at home and in the office and look at a spectral power distribution curve (SPD) it shows us exactly where this energy is concentrated;

Daylight SPD


The 4000K LED SPD shows us that there is a large amount of energy located down the shortwave 'blue end' around 450nm, with large amounts of energy as well in the 515nm-590nm range. This is mainly due to the fact that most LED's beginning life as a blue based diode which then has a phosphor added to it to produce a wider spectrum of colours.  This curve also peaks at the same bandwidths that our cones are most sensitive to;

Short wave cone peak sensitivity (SWC) - 445nm

Medium wave cone peak sensitivity (LWC) - 510nm

Long wave cone peak sensitivity (LWC) - 565nm

Putting energy into these bandwidths whilst minimising any energy elsewhere will result in an optimal light source for visual efficiency.  This light source is great for vision, however not great for circadian entrainment souring the day. We can see that energy at 490nm, the area that our ipRGCs are most sensitive to, is lacking.  That is because before understanding the relationship between our ipRGCs and body clock putting light here would be deemed as wasted energy. However, knowing what we do now, we realise that our buildings using current artificial lighting technology are visual efficient but biologically poor.


One solution is to allow more natural light into our buildings to supplement the artificial lighting; however, this is not always practical or cost effective. With daylight comes a large amount of 'extra' energy in the form of heat and UV which can be difficult to mange and potentially harmful to the occupants.  Sitting by a window would significantly improve the lighting environment for an individual, but what percentage of occupants truly have access to a window seat? 

Image by Jamie Davies


4.Brighter days, darker nights

Just as biologically rich light during the day is required to synchronise our body clock, too much light at night have have the reverse effect.  Looking again to the light/dark pattern of our planet, once the sun sets we are plunged into darkness.  However as humans do we have introduced the concept of 'light after dark' into our homes and buildings to carry on well after sunset.  This means our body clock is receiving conflicting signals.  Our homeostatic system has been building up sleep pressure all day and our body is preparing for rest and repair, however our ipRGCs are telling our SCN that it is still light out there and to delay the onset of melatonin.  This is problematic and can cause delayed sleep phase disorder (DSPS), which in turn can heighten the risk of a vast range of illness's.


Traditionally light after dark was not a concern. Light sources such as candles, oil lamps, and even incandescent light bulbs did not give off much light, and contained very little light at 490nm.  However today the combination of bright, cool colour LED lamps and screen based media devices means our evenings are full of daytime signalling blue light.  This is reflected in decline in sleep quality globally.  In a 2019 global survey on sleep of 13,000 adults across 13 countries, 80% wanted to improve their sleep quality, 67% reported waking up at least once during the night, and 63% reported they sleep longer on the weekend to catch up on missed sleep during the week.  The average sleep time across all 13,000 participants was 6.8 hours on weekdays and 7.8 hours on weekends, both short of the 8 hours recommended by the World Health Organisation.  This is an indication of a rising trend in sleeplessness which has been linked a range of medical ailments such as depression, anxiety, obesity, heart disease, cognitive illness and even certain forms of cancer.

There are many things we can do to improve sleep, but one thing that will significantly improve the timing and quality of our sleep is brighter days and darker nights - Plenty of natural or biologically rich artificial light during the day, and minimal levels of daytime alerting blue light at night.  This will provide our body with the right light, at the right place, and at the right time to ensure we are properly in sync with our environment.

Image by Mahdiar Mahmoodi